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Fig. 1. Our DressCode generates CG-friendly customized garments with sewing patterns and PBR textures under natural text guidance, enabling post-editing,
animation, and high-quality rendering.

Apparel’s significant role in human appearance underscores the importance
of garment digitalization for digital human creation. Recent advances in
3D content creation are pivotal for digital human creation. Nonetheless,
garment generation from text guidance is still nascent. We introduce a
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text-driven 3D garment generation framework, DressCode, which aims to de-
mocratize design for novices and offer immense potential in fashion design,
virtual try-on, and digital human creation. We first introduce SewingGPT, a
GPT-based architecture integrating cross-attention with text-conditioned
embedding to generate sewing patterns with text guidance. We then tai-
lor a pre-trained Stable Diffusion to generate tile-based Physically-based
Rendering (PBR) textures for the garments. By leveraging a large language
model, our framework generates CG-friendly garments through natural
language interaction. It also facilitates pattern completion and texture edit-
ing, streamlining the design process through user-friendly interaction. This
framework fosters innovation by allowing creators to freely experiment
with designs and incorporate unique elements into their work. With compre-
hensive evaluations and comparisons with other state-of-the-art methods,
our method showcases superior quality and alignment with input prompts.
User studies further validate our high-quality rendering results, highlighting
its practical utility and potential in production settings. Our project page is
https://IHe-KaiI.github.io/DressCode/.

CCS Concepts: • Computing methodologies→ Computer graphics.

Additional Key Words and Phrases: Garment Generation, Sewing Patterns,
Autoregressive Model
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1 INTRODUCTION
Apparel substantially influences the appearance of us humans, and
hence garment digitalization has emerged as a vital component of
digital human creation. An effective digital garment creation tool
should enable users to customize garments to depict the individu-
ality and diversity that make up our physical world, with various
garment traits like sewing patterns, styles, or materials. The creation
process also needs to match specific themes and be convenient, as
simple as chatting with AI agents like ChatGPT.

Recent years have witnessed tremendous progress in text-driven
asset generation, triggered by the large-scale languagemodels [Achiam
et al. 2023; Radford et al. 2021]. It democratizes the accessible text-
driven creation of diverse assets for novices, including images [Rom-
bach et al. 2022], generic 3D objects [Liu et al. 2023b; Poole et al.
2022], human hair [Zhou et al. 2023], face or body [Liao et al. 2023;
Zhang et al. 2023a]. What is still missing is the garment. Moreover,
naively applying avatar or general generation [Liao et al. 2023; Poole
et al. 2022] for the garment category is suboptimal since they turn
to generate mesh or neural fields that are incompatible with digital
garment production workflow.

In contrast, for our graphics community, the dominant representa-
tion of garments is sewing patterns, which facilitates both physical
simulation and animation in a CG-friendly fashion [Autodesk, INC.
2019; Blender Foundation 2022]. For sewing pattern generation,
early methods [Berthouzoz et al. 2013; Umetani et al. 2011] only use
simple partial modules in the workflow like parsing or draping to
3D. With the consolidation of more advanced datasets [Korosteleva
and Lee 2021], recent work enables sewing pattern generation from
point clouds [Korosteleva and Lee 2022] or images [Liu et al. 2023d].
However, they largely overlook the generation throughmore natural
language interactions, let alone handling the vivid generation with
desired texture patterns or physically-based materials, which could
significantly speed up the preliminary stage of garment design. Fur-
thermore, through the natural interactions of text prompts, novices
without professional skills in complex design software can directly
describe and transform their ideas into creations. This significantly
lowers the design barriers, allowing more newcomers to participate
in the creative process. Most importantly, generative models intro-
duce diversity to designed text prompts, generate varied types of
garments conforming to the prompts, and hence stimulate designer
creativity.
In this paper, we propose DressCode, a 3D garment generation

framework that generates high-quality garments via natural lan-
guage interaction. As illustrated in Figure 1, DressCode allows
users to customize garments with preferred sewing patterns and
physically-based texture details through text interaction. The re-
sulting garments can be seamlessly integrated with CG pipelines,
supporting post-editing and animation while ensuring high-quality
rendering.

Notably, the garments’ highly symmetric and structured nature,
with uniform panels and stitching, leads to convenient conversion
from sewing patterns to discrete “codes.” To this end, inspired by
powerful language generation apt for this nature, we introduce
SewingGPT, a GPT-based architecture for sewing pattern genera-
tion. Specifically, we adopt a novel quantization process to translate
the sewing patterns into token sequences and subsequently utilize a
decoder-only Transformer with text-conditioned embedding for to-
ken prediction. We utilize the pre-trained CLIP [Radford et al. 2021]
model to encode prompts as conditional embeddings, benefiting
from CLIP’s generalized capability in multimodal understanding.
For effective training, we apply GPT-4V [Achiam et al. 2023] on
the existing dataset [Korosteleva and Lee 2021] to detail diverse
garment types and shapes with rich text prompts. Once trained, our
SewingGPT autoregressively generates quantized sewing patterns
with efficient text interactions, which have been unseen before.

To achieve high-quality garment rendering, we progressively
tailor a pre-trained Stable Diffusion model [Rombach et al. 2022]
to generate tile-based Physically-based Rendering (PBR) textures
from text prompts. We first fine-tune the U-Net architecture [Ron-
neberger et al. 2015] of the diffusion model within latent space
to generate the diffuse attribute, and then fine-tune the various
VAE [Kingma and Welling 2013] decoders to generate normal and
roughness maps separately. We showcase the capability of Dress-
Code to generate CG-friendly garments with rich sewing patterns
and PBR textures from text prompts. We also demonstrate the ver-
satility of our approach, including a ChatGPT-like conversational
agent for interactive garment generation, garment completion from
partial inputs, and user-friendly texture editing. To summarize, our
main contributions include:

• We propose a first text-driven garment generation pipeline
with high-quality garment sewing patterns and physically-
based textures.

• We introduce a novel generative paradigm for sewing patterns
as a sequence of tokens, achieving high-quality autoregressive
generation via text guidance.

• We tailor a diffusion model for vivid texture generation of gar-
ments from text prompts and showcase interaction-friendly
applications for garment generation, completion, and editing.

2 RELATED WORK
Garment Sewing Pattern Modeling. Sewing pattern representa-

tion is vital for garment modeling. Recent studies have delved into
sewing pattern reconstruction [Jeong et al. 2015; Pietroni et al. 2022;
Sharp and Crane 2018; Su et al. 2022; Wang et al. 2018; Yang et al.
2018], generation [Shen et al. 2020], draping [Berthouzoz et al. 2013;
De Luigi et al. 2023; Li et al. 2023b] and editing [Bartle et al. 2016;
Qi et al. 2023; Umetani et al. 2011]. Early research [Chen et al. 2015]
employs a search in a pre-defined database of 3D garment parts for
garment reconstruction. Studies [Jeong et al. 2015; Su et al. 2020;
Yang et al. 2018] use parametric sewing patterns, optimizing them
for garment reconstruction from images. [Wang et al. 2018] ad-
vances this by applying deep learning to discern a shape space for
sewing patterns and various input modalities. [Bang et al. 2021;
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Sharp and Crane 2018] utilize surface flattening for sewing pattern
reconstruction from 3D human models.
Recently, some work [Goto and Umetani 2021; Korosteleva and

Lee 2022; Zhu et al. 2020] adopt data-driven approaches for recon-
struction. [Goto and Umetani 2021] utilizes a deep network with
surface flattening for sewing pattern reconstruction from 3D ge-
ometries. [Korosteleva and Lee 2021] generates a sewing pattern
dataset covering a wide range of garment shapes and topologies.
NeuralTailor [Korosteleva and Lee 2022] offers advanced sewing
pattern reconstruction using a hybrid network to predict garment
panels and stitching information from point cloud input. [Chen
et al. 2022] introduces a CNN-based model capable of predicting
garment panels from single images, using PCA to simplify the panel
data structure. [Liu et al. 2023d] creates a comprehensive dataset
featuring diverse garment styles and human poses and introduces a
two-level Transformer network, achieving state-of-the-art sewing
pattern reconstruction from single images. [Korosteleva and Sorkine-
Hornung 2023] designs the first DSL for garment modeling, enabling
users to do rich garment designs using interchangeable, parame-
terized components. [Li et al. 2023a] proposes a novel approach to
recover garment materials and patterns with optimization using
differentiable simulation. While these solutions yield notable re-
sults, a gap persists in user-friendliness and practicality compared
to direct communication of outcomes through natural language.
Furthermore, prior studies have largely overlooked generating gar-
ment color, texture, and material, essential elements for creating
high-quality garments.

Text-to-3D Generation. Recent breakthroughs in the text-to-image
domain [Ho et al. 2020; Rombach et al. 2022; Zhang et al. 2023b]
have enhanced interest in text-guided 3D content generation. Early
work [Jain et al. 2022] introduces a text-to-3D method guided by
CLIP [Radford et al. 2021]. [Poole et al. 2022; Wang et al. 2023a]
present the Score Distillation Sampling (SDS) algorithm, elevating
pre-trained 2D diffusion models for the 3D generation. [Metzer et al.
2023] optimizes Neural Radiance Fields (NeRF) [Mildenhall et al.
2021] in the latent space. [Chen et al. 2023a; Lin et al. 2023] optimize
efficient mesh representations [Munkberg et al. 2022; Shen et al.
2021] for higher quality generation. [Seo et al. 2023] integrates 3D
awareness into 2D diffusion for improving text-to-3D generation
consistency. Subsequent studies [Chen et al. 2023b; Lugmayr et al.
2022; Richardson et al. 2023] focus on texturing pre-existing meshes,
balancing speed and quality. Despite their innovations, SDS-based
methods faced challenges with over-saturation. [Tsalicoglou et al.
2023] proposes a novel method to refine mesh textures for more
realistic generations. ProlificDreamer [Wang et al. 2023b] intro-
duces the Variational Score Distillation (VSD) method to mitigate
over-saturation effectively. Furthermore, several studies [Liu et al.
2023a; Shi et al. 2023b; Ye et al. 2023; Zhao et al. 2023] explored 3D
generation using multi-view diffusion. Concurrently, some research
[Huang et al. 2023; Liu et al. 2023c,b; Long et al. 2023; Melas-Kyriazi
et al. 2023; Qian et al. 2023; Raj et al. 2023; Shi et al. 2023a; Tang et al.
2023; Wu et al. 2023; Xu et al. 2023] concentrates on reconstruct-
ing 3D content from a single image through distillation, achieving
high-fidelity textured meshes from 2D diffusion priors. Additionally,
some studies [Erkoç et al. 2023; Nash et al. 2020; Siddiqui et al. 2023;

Yu et al. 2023] delve into shape generation. [Yu et al. 2023] generates
high-quality 3D shapes with Unsigned Distance Field (UDF) through
Diffusion models. [Nash et al. 2020; Siddiqui et al. 2023] employ au-
toregressive models for mesh structure generation. Although some
general object generation methods [Mildenhall et al. 2021; Poole
et al. 2022; Qiu et al. 2023; Wang et al. 2023a,b; Yu et al. 2023] can
produce garments, their practicality in CG environments is limited.
Very Recent work, Garment3DGen [Sarafianos et al. 2024] enables
users to generate textured 3D garments from single images or text
prompts based on a 3D base mesh. These 3D outputs, mostly mesh-
based or derived from implicit fields, lack adaptability for fitting
different bodies and layering multiple garments, common needs in
garment design. Furthermore, the textures, typically produced via
optimization or multi-view reconstruction, are often low-resolution
and blurry, neglecting the structured UV mapping of garments, re-
sulting in poor topology challenging for subsequent CG processing.

3 SEWING PATTERN GENERATION
Inspired by powerful language generative models, we introduce
SewingGPT, a GPT-based autoregressive model for sewing pat-
tern generation with text prompts. We first convert sewing pat-
tern parameters into a sequence of quantized tokens and train a
masked Transformer decoder, integrating cross-attention with text-
conditioned embeddings. After training, our model can generate
token sequences autoregressively based on user conditions. The gen-
erated sequences are then de-quantized to reconstruct the sewing
patterns.

3.1 Sewing PatternQuantization
Pattern representation. We utilize the sewing pattern templates

from [Korosteleva and Lee 2022], which cover a wide variety of
garment shapes. Each sewing pattern includes 𝑁𝑃 panels {𝑃𝑖 }𝑁𝑃

𝑖=1
and stitching information 𝑆 . Each panel 𝑃𝑖 forms a closed 2D polygon
with 𝑁𝑖 edges {𝐸𝑖, 𝑗 }𝑁𝑖

𝑗=1. Each edge 𝐸𝑖, 𝑗 consists of four parameters
(𝑣𝑥 , 𝑣𝑦, 𝑐𝑥 , 𝑐𝑦), where (𝑣𝑥 , 𝑣𝑦) represents the edge’s start point, and
(𝑐𝑥 , 𝑐𝑦) represents the control point of the Bezier curve. Since the
panels form closed polygons, we do not need to store the edges’
endpoints. The 3D placement of each panel is indicated by rotation
quaternion 𝑅𝑖 ∈ SO(3) and translation vector 𝑇𝑖 ∈ R3. For stitching
information, we utilize per-edge stitch tags {𝑆𝑖, 𝑗 }𝑁𝑖

𝑗=1 and stitch flags

{𝑈𝑖, 𝑗 }𝑁𝑖

𝑗=1 for each panel 𝑃𝑖 , obtained from the stitching information
𝑆 . Each stitch tag 𝑆𝑖, 𝑗 ∈ R3 is based on the 3D placement of the
corresponding edge, and each stitch flag is a binary flag with 𝑈𝑖, 𝑗 =
{0, 1} indicating whether there is a stitch on this edge. We follow a
similar approach to that used in [Korosteleva and Lee 2022], which
utilizes Euclidean distance between tags as a similarity measure. To
restore the stitching information from stitch tags and stitch flags,
we filter out free and connected edges with stitch flags and then
compare the stitch tags of all pairs of connected edges.

Quantization. For each panel, we first utilize a similar data prepro-
cessing approach to that used in [Korosteleva and Lee 2022], which
standardizes all edge vectors and control points to maintain the data
within a standard normal distribution, and normalizes its 3D place-
ment to ensure all values are between 0 and 1. Then, we quantize all
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Fig. 2. Overview of our SewingGPT pipeline. We quantize sewing patterns to the sequence of tokens and adopt a GPT-based architecture to generate the
tokens autoregressively. Our SewingGPT enables users to generate highly diverse and high-quality sewing patterns under text prompt guidance.

Fig. 3. Details of our quantization. We present an example of a part of a
sleeveless dress, including a skirt panel (Panel 1) and a top panel (Panel 2).
Assuming 𝑁1 < 𝑁2 = 𝐾 , we require zero-padding for tokens from Panel 1.

parameters, subsequently converting them into tokens. Specifically,
for panel 𝑃𝑖 , we model all parameters as discrete variables by multi-
plying predefined constants𝐶𝐸 ,𝐶𝑅,𝐶𝑇 ,𝐶𝑆 by edge vectors, rotation,
translation, and stitching feature vectors respectively, and maintain
stitching flags as 0 or 1. We flatten and concatenate 𝑁𝑖 edges, one
rotation quaternion, one translation vector, 𝑁𝑖 stitching vectors,
and 𝑁𝑖 stitching flags, into a sequence of tokens. We carefully se-
lect these constants to offer a good trade-off between maintaining
the fidelity of sewing patterns and managing the vocabulary size.

Overall, we can represent the quantization process as

T (𝑃𝑖 , 𝑆) = 𝐶𝐸 {𝐸𝑖, 𝑗 }𝑁𝑖

𝑗=1⊕𝐶𝑅𝑅𝑖 ⊕𝐶𝑇𝑇𝑖 ⊕𝐶𝑆 {𝑆𝑖, 𝑗 }
𝑁𝑖

𝑗=1⊕{𝑈𝑖, 𝑗 }𝑁𝑖

𝑗=1 (1)

where we denote T as the quantization function, and ⊕ as the linear
concatenation of tokens. These tokens are then formed into a linear
sequence. We set a maximum limit, denoted as 𝐾 , for the number
of edges in each panel. To maintain a uniform token count across
panels, we apply zero-padding to panels with 𝑁𝑖 < 𝐾 . Subsequently,
all panels are flattened and merged into a single sequence, start-
ing with a start token and ending with an end token. Owing to
the uniformity of token counts for each panel, inserting padding
tokens between panels is not required. Consequently, the resultant
sequence, as illustrated in Figure 3, denoted as F seq, spans a length
of 𝐿𝑡 = (8𝐾 + 7)𝑁𝑃 , with each token denoted by 𝑓𝑛 for 𝑛 = 1, . . . , 𝐿𝑡 .
Eventually, we can represent it as

F seq = {T (𝑃𝑖 , 𝑆) +𝐶}𝑁𝑃

𝑖=1, (2)

where C is a constant to ensure all tokens are non-negative.

3.2 Generation with Autoregressive Model
Utilizing GPT-based architectures, we adopt a decoder-only trans-
former to generate token sequences for sewing patterns. Inspired
by PolyGen [Nash et al. 2020], we design the triple embedding for
each input token: positional embedding, denoting which panel it
belongs to; parameter embedding, classifying the token as edge coor-
dinates, rotation, translation, or stitching feature vectors; and value
embedding for the quantized sewing pattern values. The source
tokens are then input into the transformer decoder to predict the
probability distribution of the next potential token at each step.
Consequently, the objective is to maximize the log-likelihood of the
training sequences:

L = −
𝐿𝑡∏
𝑖=1

𝑝 (𝑓𝑖 | 𝑓<𝑖 ;𝜃 ) . (3)

By optimizing this objective, our SewingGPT learns the intricate re-
lationships among the shape, placement, and stitching information
of each panel. In the inference stage, target tokens begin with the
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Fig. 4. Examples of our data captions.We utilize the rendered images
and ask GPT-4V with the designed prompt for detailed captions.

start token and are recursively sampled from the predicted distri-
bution 𝑝

(
𝑓𝑖 | 𝑓<𝑖 ;𝜃

)
until the end token. Following autoregressive

token sequence generation, we reverse token quantization, convert-
ing the generated data to its original sewing pattern representation.

Conditional Generation with Text Prompts. To guide the sewing
pattern generation, our model integrates cross-attention with text-
conditioned embeddings h. Initially, we utilize the CLIP model to
obtain the CLIP embedding from input text prompts. Then, we
project it into a feature embedding through a trainable compact
Multilayer Perceptron (MLP) to condense the dimensionality of
CLIP embeddings, matching the Transformer’s dimensionality. This
approach also boosts memory efficiency and inference speed. Subse-
quently, the Transformer decoder conducts cross-attention with the
feature embedding [Li et al. 2022]. We train the model with pairwise
data, facilitating condition-specific token generation.

3.3 Implementation Details
Dataset. We utilize the extensive sewing pattern garment dataset

from [Korosteleva and Lee 2021], notable for its comprehensive
range of sewing patterns and styles of garments, including shirts,
hoods, jackets, dresses, pants, skirts, jumpsuits, vests, etc. Our ex-
periments use approximately 19264 samples across 11 fundamental
categories. Each garment in the dataset contains a sewing pattern
file, a 3D garment mesh draped on a T-pose human model, and a
rendered image. We employ the GPT-4V [Achiam et al. 2023] to
generate captions for garments from the rendered images of the
front view and the back view. For each garment, we first prompt
GPT-4V to generate its common name (e.g., hood, T-shirt, blouse)
if available, followed by a request for specific geometric features
(e.g., long sleeves, wide garment, deep collar), as demonstrated in
Figure 4. We combine these two descriptions to form the caption
for each garment. In our experiments, we use the pre-defined order
of panels in the dataset for training. Additionally, We utilize about
90% of the data from each category for training and the remaining
for validation.

Training. We set 𝐾 = 14, and the maximum length of tokens is
1500. Our decoder-only Transformer consists of 24 layers with posi-
tion embedding dimensionality of 𝑑𝑝𝑜𝑠 = 512, parameter embedding
dimensionality of 𝑑𝑝𝑎𝑟𝑎 = 512, value embedding dimensionality of
𝑑𝑣𝑎𝑙 = 512, and text feature embedding dimensionality of 𝑑𝑓 = 512.
We set constants 𝐶𝐸 = 50,𝐶𝑅 = 1000,𝐶𝑇 = 1000,𝐶𝑆 = 1000 and,
𝐶 = 1000. Our CLIP embeddings have a dimension of 𝑑CLIP = 1024,

and condensed feature embeddings have a dimension of 𝑑feature =
512. We train our model using Adam optimizer, with a learning rate
of 10−4 and a batch size of 4. The model is trained on a single A6000
GPU for 30 hours.

4 CUSTOMIZED GARMENT GENERATION
With SewingGPT, we have the capability to generate diverse sewing
patterns directly from text prompts. Recognizing appearance’s cru-
cial role in the CG pipeline, we aim to generate corresponding
Physically-based Rendering (PBR) textures for these patterns, align-
ing more closely with garment design workflows. By leveraging
the SewingGPT and PBR texture generator, our framework Dress-
Code further utilizes a large language model to create customized
garments for users through natural language interaction.

4.1 PBR Texture Generation
In some production software commonly utilized by fashion design-
ers, designers often create the texture of the garments after com-
pleting the pattern design. For garments, designers usually employ
tile-based and physically-based textures such as diffuse, roughness,
and normal maps to enhance the realistic appearance of the fabric.
Therefore, to generate customized garments, we tailor a pre-trained
Stable Diffusion [Rombach et al. 2022] and employ a progressive
training approach to generate PBR textures guided by text.

Latent Diffusion Finetuning. Text-to-image generation has ad-
vanced significantly with the latent diffusion model (LDM). Existing
foundation models, such as Stable Diffusion, trained on billions of
data points, demonstrate extensive generalization capabilities. As
the original LDM is trained on natural images, adapting it to gener-
ate tile-based images is necessary. To achieve this while maintaining
the model’s generalizability, we collect a PBR dataset with captions
and fine-tune the pre-trained LDM on this dataset. We freeze the
original encoder E and decoder D, fine-tuning the U-Net denoiser
at this stage. During inference, our fine-tuned LDM is capable of
generating tile-based diffuse maps using text prompts.

VAE Finetuning. As we can generate high-quality and tile-based
diffuse maps, achieving realistic CG rendering requires us to further
generate normal maps𝑈𝑛 and roughness maps𝑈𝑟 based on our gen-
erated diffuse maps𝑈𝑑 . In addition to the pretrained LDM encoder
E and decoder D, we fine-tune another two specific decoders D𝑛

and D𝑟 . With a denoised texture latent code 𝑧 by text input, which
can be decoded into diffuse maps through 𝐷 , we utilize D𝑛 and D𝑟

to decode 𝑧 into normal maps and roughness maps respectively.

4.2 Customized Generation through User-friendly
Interaction

Guided by natural language. Following the implementation of
generating sewing patterns and textures through text prompts, our
framework in practical scenarios enables designers to interact with
the generator using natural language instead of relying on dataset-
like formatted prompts. We adopt GPT-4 [Achiam et al. 2023] with
content learning to interpret users’ natural language inputs, sub-
sequently producing shape prompts and texture prompts. These
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Fig. 5. Overview of our entire DressCode pipeline for customized garment generation. We employ a large language model to obtain shape prompts
and texture prompts with natural language interaction and utilize the SewingGPT and a fine-tuned Stable Diffusion for high-quality and CG-friendly garment
generation.

Fig. 6. Examples of our multiple garments draping process. Starting
with initial sewing patterns, we first drape the inside T-shirt, followed by
draping the outside jacket onto the model’s body.

prompts are then fed to the SewingGPT and the PBR texture genera-
tor, respectively. Once sewing patterns are generated, we stitch them
onto a T-pose human model. Subsequently, the generated garments,
along with PBR textures, seamlessly integrate into industrial soft-
ware, allowing for animation with the human model and rendering
under various lighting, ensuring vivid, realistic results.

Multiple garments draping. Production settings usually necessi-
tate generating multiple clothing items (e.g., daily outfits like pants,
T-shirts, and jackets) simultaneously. Past 3D content generation
studies based on mesh or implicit fields face challenges in effectively
achieving layered draping of multiple garments on a target human
model. The adoption of sewing pattern representation enables the
respective generation of multiple garments and their natural drap-
ing onto the human model. In our work, for T-pose results, we use
the Qualoth simulator [Choi and Ko 2002] as the physics simulator.
We utilize the same material parameters and 3D human model from
[Korosteleva and Lee 2021]. In the process of draping multiple gar-
ments, we employ an automated sequential multi-garment draping
technique, as depicted in Figure 6. Specifically, for a set of clothes,
we drape the garment onto the model’s body from the inside out.
After each simulation, we combine the mesh of the simulated gar-
ment and the human model, then perform the next simulation with
the subsequent garment.

Fig. 7. Examples of pattern completion. Given an incomplete pattern,
our method infers reasonable sewing pattern completions with various text
prompts.

Pattern Completion. Benefiting from the autoregressive model,
our method can complete the entire sewing pattern by utilizing
probabilistic predictions provided by the model upon receiving
partial pattern information. Additionally, inputting a text prompt
can guide the model in completing the sewing patterns. Our work,
as illustrated in Figure 7, demonstrates that with a given sleeve, our
model adapts to complete various sewing patterns based on different
prompts. This enables users to design partial patterns manually and
utilize SewingGPT for inspiration and completion of the garments
guided by the text prompts.

Texture Editing. In the majority of recent 3D generation tasks,
the inability to produce structured UV maps has been a significant
impediment, particularly for generating garments. However, our
generation method, utilizing sewing pattern representation, enables
the creation of distinct and structured UV mappings of each panel.
This facilitates convenient texture editing at specific locations, allow-
ing efficient post-processing on the textures. As shown in Figure 8,
we demonstrate the SIGGRAPH icon drawn on a cream-colored T-
shirt’s diffuse map and a duck seamlessly blended with the original
grey-colored pants’ diffuse map by creating hand-made sketches
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Fig. 8. Examples of texture editing. By manually drawing or creating
sketches with text prompts, our method facilitates user-friendly texture
editing.

with text prompts in the masked areas (refer to stable-diffusion-
webui [AUTOMATIC1111 2022] for detailed implementation).

5 EXPERIMENTS
In this section, we first conduct qualitative and quantitative compar-
ison experiments with other state-of-the-art 3D generation methods
to demonstrate the generation capability of our method. We then
present ablation studies and validation to evaluate our pipeline. Fur-
thermore, we conduct a qualitative comparison experiment with
parametric templates and perform a comprehensive user study to
showcase our results compared to other methods. We also verify
our results in Marvelous Designer [CLO3D 2024]; we manually load
generated garments into the software and then animate the gar-
ments with the human model in non-T-pose. We then show a results
gallery in Figure 9 of generated high-quality garments using our
method with various text prompts, including generated sewing pat-
terns, PBR textures, draping results on a T-pose human model, and
animated results with various poses under different illuminations.

5.1 Comparison of 3D Garment Generation
Comparisons on sewing pattern generation. We show some quali-

tative comparisons with two state-of-the-art sewing pattern works
[Korosteleva and Lee 2022; Liu et al. 2023d] in Figure 10, where we
present the panel prediction, draped garment on a T-pose human
model, and corresponding inputs for each method. Given that Neu-
ralTailor is designed for 3D point cloud inputs and trained on open-
surface meshes, we utilize a 3D generation method Surf-D [Yu et al.
2023] using the UDF representation to create meshes conditioned
on specific garment categories as inputs (denoted as NeuralTai-
lor*). Note that Surf-D is trained on the Deep Fashion3D dataset.
Although our method supports complex prompts, we only select cat-
egory names such as skirt and sleeveless dress, which are presented
in the Deep Fashion3D dataset, in our experiment as prompts to
ensure a fair comparison. For Sewformer, designed for image inputs,
we utilize DALLE-3 [Betker et al. 2023] to synthesize input images
from text prompts (denoted as Sewformer*). While Sewformer is
trained on images of human models wearing both upper and lower
garments, we synthesize the images with the same rule and extract
partial target panels from predicted results for comparison. For the
first row of Figure 10, our generated image involves a model wear-
ing both a top shirt and a skirt, not only a sole skirt, which aligns

Wonder3D* RichDreamer Ours

CLIP score ↑ 0.302 0.324 0.327
Runtime ↓ ∼ 4 mins ∼ 4 hours ∼ 3 mins
PBR Texture % ! !

Texture Editing % % !

Draping % % !

Table 1. Quantitative and characteristic comparisons on different
methods. Compared to other methods, our method achieves the highest
CLIP score and yields several CG-friendly characteristics.

with the training dataset in Sewformer. For fairness, we manually
extract skirt patterns from Sewformer predictions, as shown in the
comparison. Since the generated input meshes are mostly out of
the domain of NeuralTailor’s training dataset, the results appear
as distorted panels and fail to be stitched together. Sewformer is
trained on a new dataset with better generalization; nevertheless, it
also encounters issues with irregular and distorted panels, as well
as poor garments after stitching. Our method, yielding more accu-
rate results, demonstrates robust generation capabilities with text
prompts.

Comparisons on text-to-3D generation. We evaluate the quality
of our customized garment generation with various 3D generation
methods in Figure 11. We present qualitative comparisons with
two state-of-the-art 3D content generation methods: Wonder3D
[Long et al. 2023], a 3D creation method from single images, and
RichDreamer [Qiu et al. 2023], a text-to-3D work, generating with
PBR textures. We adopt DALLE-3 [Betker et al. 2023] to synthesize
image inputs for Wonder3D (denoted as Wonder3D*). Wonder3D
takes about 4 minutes to generate garments but fails to retain fine
detail and fidelity to the input images, yielding poor geometry. Rich-
Dreamer takes approximately 4 hours to optimize and yield more
realistic results; however, the generated garments are still blurry
for rendering. Furthermore, these generated garments are close-
surface meshes, as shown in Figure 11, and fail to adapt to human
bodies. In contrast, our method takes about 1 minute to generate
sewing patterns, and overall about 3 minutes to generate the simu-
lated garments. It facilitates draping garments on human models in
various poses and generating high-quality tile-based PBR textures,
achieving realistic rendering.

Additionally, we adopt the CLIP score to quantitatively measure
different methods. We generate 15 garments with highly diverse
text prompts using each method. Then, we render the generated
3D garments with textures and calculate the CLIP score using the
given text prompts. Although our method does not optimize the 3D
models for fitting the rendered images to text prompts better, our
model achieves the highest CLIP score, demonstrating the effective-
ness of our method. These general 3D methods are more broadly
applicable than to only 3D garments. However, we also compare
several characteristics among different methods, highlighting the
advantages of our CG-friendly asset generation in the specific 3D
garment domain. The results are shown in Table 1.
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Fig. 9. Our results gallery of DressCode.We generate sewing patterns, PBR textures, and garments in diverse poses and lighting conditions, guided by
various text prompts.
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Fig. 10. Qualitative comparisons on sewing patterns. Major errors on panels are marked with red edges. The inputs of each method from left to right are
meshes, images, and texts, respectively, which are shown along with the results.

Fig. 11. Qualitative comparisons on text-to-3D generation. Images on
the right side of our methods are the draped garments on human models.
Images on the right top of other methods are the top view of each garment.
We show our results yield high-quality rendering and the capability to drape
on human bodies.

Fig. 12. Ablation on embeddings. Better sewing patterns are generated
with our designed parameter embedding and positional embedding.

5.2 Ablation Study
Weevaluate the performance of our triple embedding used in Sewing-
GPT in Figure 12. We first train the model with only value embed-
ding (denoted as w/o pos & w/o param). The results are highly
disordered, with strongly distorted panels, containing mismatched
stitching information. We then incorporate the parameter embed-
ding (denoted as w/o pos), facilitating the model to learn categories
(e.g., edge coordinates, rotation parameters, translation parameters,
or stitching feature vectors) of each token in a panel, and the results
show the better shape of each panel, yet it is still distorted and
lacking enough panels. Lastly, we further incorporate the positional
embedding (denoted as full), enabling the model to distinguish be-
tween different panels and the number of panels, leading to the best
and complete results.

5.3 Validation
To validate our methods, we design two experiments, as shown
in Figure 13. Firstly, we test text prompts from the holdout set as
done for training and compare the results in the dataset with our
generated outputs. In the first two rows of Figure 13, we test two
data points from outside the training dataset and observe that the
generated results correspond well to the input prompts. Notably, in
the dress example in the first row, although our generated result
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Fig. 13. Validation. We validate our generated garments with the text
prompts from our dataset out of training and in the wild. Our results align
well with the text prompts, demonstrating the effectiveness of our method.

Fig. 14. Qualitative comparison with Parametric Templates. The user
inputs the prompt “a loose night-robe,” and we show the results from Para-
metric Templates and our proposed SewingGPT.

includes a waistband while the reference example does not, this
still aligns well with the “fitted waist” attribute mentioned in the
prompt. Furthermore, we test an image in the wild from the Deep
Fashion3D dataset [Zhu et al. 2020] and utilize the method described
in Section 3.3 with GPT-4V [Achiam et al. 2023] to generate the
caption. This serves as the input to qualitatively compare our result
with the reference image, revealing that our result closely resembles
the input image. This demonstrates that our work effectively bridges
the gap between conceptual textual descriptions and their practical,
visual counterparts in garment design.

Fig. 15. Examples from our user study.We present two cases for users
to select the best results from three options: A, B, and C. The left group of
results is generated by Ours, RichDreamer, andWonder3D*, respectively, and
the right group of results is generated byWonder3D*,Ours, and RichDreamer,
respectively. The generation method of each image is not disclosed to the
users.

Table 2. Quantitative results of user study. It demonstrates the higher
user preference for our method compared to other methods.

5.4 Comparison with Parametric Templates
[Korosteleva and Lee 2021] propose a method of a flexible descrip-
tion structure for specifying parametric sewing pattern templates.
An intuitive idea is that we can control the parameters of the pre-
defined parametric sewing pattern templates to generate diverse
garments (denoted as Parametric Templates). To facilitate interac-
tion through natural language and benefit from the strong capability
of content learning in ChatGPT, we employ GPT-4 [Achiam et al.
2023] in our experiment, designing prompts to enable its role as
a garment design assistant, providing formatted outputs. Subse-
quently, we inquire about the description of garments, prompting it
to output parameters for a specific template. As illustrated in the
middle left of Figure 14, GPT-4 responds with several parameters
when we ask with “a loose night-robe.” We qualitatively compare
the results from Parametric Templates and our SewingGPT in Fig-
ure 14, observing that both methods generate reasonable results.
Nevertheless, our proposed SewingGPT is more adaptable to the di-
verse categories of data, as it does not require selecting pre-defined
templates and designing prompts specifically for ChatGPT’s content
learning. Additionally, our methods enable us to extend beyond such
parametrized datasets for more complex sewing patterns.

5.5 User Study
We conduct a comprehensive user study to evaluate the quality of
our generated customized garments, particularly their alignment
with given text prompts and overall quality. Given 20 text prompts,
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including descriptions of the shape and texture of garments, we
then render the generated results for each method and shuffle the
order of results obtained by different methods, as shown in Figure 15.
Then we ask 30 users to select the best results from all candidates
with comprehensive consideration for two aspects: conformity to
the captions of prompt texts regarding garments’ shape and texture,
and the visualized quality and fidelity of the rendered garments.
As illustrated in Table 2, the preference results clearly indicate a
significant advantage of our method over competing approaches in
both aspects, highlighting its superiority in aligning closely with the
textual prompts and producing visually appealing and high-fidelity
garments.

5.6 Limitations and Discussions
Despite producing high-quality garment generation from text guid-
ance, our method encounters certain limitations. One limitation
is that the current sewing pattern dataset limits the generation of
multi-layered garments, such as “hoodie jacket with a pocket,” as
depicted in the first row of Figure 16. It underscores the importance
of dataset expansion to include more complex stitching relation-
ships. Another limitation is that our model struggles with prompts
outside the domain of our dataset. For instance, we test prompts like
“one-shoulder dress.” As shown in the second row of Figure 16, the
model still generates a “two-shoulder dress,” due to the absence of
“one-shoulder” garments in our dataset, which hinders its ability to
recognize this attribute. Similarly, we experiment with integrating
unusual characteristics into garments, combining specific attributes
from different categories of garments, such as a “dress with a hood,”
a style not commonly encountered in real life. Our results shown
in the last row of Figure 16 display a very loose hoodie jacket. Al-
though the results somewhat resemble a dress with its loose style,
a dress should not be open-front. This outcome is due to the pres-
ence of only hoodie jackets as hooded garments in our dataset,
leading to a bias toward producing results within the hoodie jacket
category when the prompt includes a “hood.” We believe that enrich-
ing the dataset with a wider variety of garments can significantly
enhance the model’s versatility. Additionally, inspired by recent
breakthroughs in the generation domain, distilling knowledge from
the pre-trained foundation model, such as SDS [Poole et al. 2022], to
improve generalization is a worthy direction for future work. Lastly,
although our framework is pioneering in generating garments with
text prompts, incorporating multi-modality inputs could prove more
effective. Generating sewing patterns and textures controlled by
both text and images presents a particularly intriguing and chal-
lenging problem yet to be addressed in real-world applications.

Potential ethical implications. The text-driven generation method
is subject to biases inherent in underlying pre-trained models such
as CLIP and Stable Diffusion. Its user-friendliness and high-quality
outputs also carry potential risks for misuse, emphasizing the ne-
cessity for future initiatives to tackle these ethical concerns through
bias mitigation and thorough review. Additionally, the utilization of
Stable Diffusion for both fine-tuning and inference purposes raises
significant concerns regarding potential copyright issues, as the
model may inadvertently generate content that mirrors proprietary
works without explicit authorization. It is important for future work

Fig. 16. Failure cases. Our method struggles to generate garments that
fall outside the domain of the training dataset. We present three examples
of generated results: a “hoodie jacket with a pocket,” a “one-shoulder dress,”
and a “dress with a hood.” The reference images are generated by DALLE-3
[Betker et al. 2023].

to ensure that the training data and generated content of these
models are carefully reviewed and selected.

6 CONCLUSIONS
In conclusion, this paper introduces DressCode, a novel customized
garment generation framework featuring a text-driven sewing pat-
tern generator SewingGPT. This framework democratizes garment
design bymaking it accessible and interactive, enabling both novices
and experts to generate detailed sewing patterns and high-quality
PBR textures through simple textual prompts. Additionally, our
framework supports interaction-friendly applications for garment
generation, completion, and editing, providing powerful tools that
enable designers to unleash their creative imagination. Our experi-
mental results and user study demonstrate the effectiveness of our
method in producing CG-friendly garments that excel in quality
and alignment with input prompts.
In contrast to past work, our approach democratizes fashion de-

sign through enhanced accessibility and interactivity and improves
the practical utility of digital garments in CG pipelines for post-
editing, animation, and realistic rendering. The ease of use and
innovative approach of DressCode promise exciting developments
for future advancements in digital garments, potentially transform-
ing digital garment creation and customization. We envision our
method benefiting CG production and advancing the digital gar-
ment landscape for virtual try-on, fashion design, and digital human
creation.
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